Braced Collar Beam


This is a modification of the last type, but is adapted for thick walls only. The tie rod braces (A, A) have to be brought down low to give a good bracing action, and this arrangement is capable of considerable ornamentation.

The steeper the pitch the higher up would be the inner and lower brace posts (B, B) which were supported by the top of the wall. This form is not available for wide spans, and is shown to illustrate how the development was made into the succeeding

Fig. 290. Braced Collar Beam. Fig. 290. Braced Collar Beam.

The Rib and Collar Truss, Fig. 291, is the first important structural arrangement which permitted the architect to give full sway to embellishment. The inwardly-projecting members (A, A) are called Hammer Beams. They were devised as a substitute for the thick walls used in the Braced Collar Beam Truss, and small brackets (B, B) were placed beneath as supports.

Fig. 291. Rib and Collar Truss. Fig. 291. Rib and Collar Truss.

The short tie beam (C), near the apex, serves as the member to receive the thrust and stress of the curved ribs (D, D). It forms a most graceful type of roof, and is capable of the most exquisite ornamentation, but it is used for the high pitched roofs only.

Fig. 291½. Hammer Beam Truss. Fig. 291½. Hammer Beam Truss.

The acme of all constructions, in which strength, beauty, and capacity for ornamentation are blended, is the Hammer Beam Truss. Here the hammer beam projects inwardly farther than in the preceding figure, and has a deeper bracket (B), and this also extends down the pendant post (C) a greater distance.

The curved supporting arch (D), on each side, is not ribbed, as in the Rib and Collar Truss, but instead, is provided with openwork (not shown herein), together with beadings and moldings, and other ornamental characteristics, and some of the most beautiful architectural forms in existence are in this type of roof.

What are called Flying Buttresses (E) are sometimes used in connection with the Hammer Beam Truss, which, with heavy roofs and wide spans, is found to be absolutely necessary.